The Hidden Energy Crisis in Computing

A Whitepaper on Software’s Environmental Impact

David Jean Charlot, PhD Open Interface Engineering, Inc. (openlE) University of California, Santa
Barbara (UCSB) david@openie.dev | dcharlot@ucsb.edu

February 2026 | Version 1.0

This work is licensed under CC BY 4.0 | Open Access Research

Abstract

The global computing infrastructure (data centers, personal devices, network equipment, and
embedded systems) now consumes approximately 4-5% of global electricity production [1]. This fig-
ure is growing at 7-10% annually, outpacing efficiency improvements in hardware. While attention has
focused on data center design and renewable energy procurement, a critical factor remains largely un-

addressed: the energy efficiency of software itself.

This whitepaper examines how programming language design and software architecture decisions

contribute to energy consumption, and outlines pathways toward more sustainable computing practices.

Keywords: energy consumption, software efficiency, programming languages, sustainable computing,

data centers, carbon footprint, compiler optimization

1. The Scale of Computing’s Energy Footprint

1.1 Data Centers

Global data centers consumed an estimated 240-340 TWh of electricity in 2022, roughly equi-
valent to the entire energy consumption of the United Kingdom [1]. The International Energy
Agency projects this could reach 1,000 TWh by 2026, driven primarily by Al workloads [2].
Key contributors: - Compute workloads: 40-50% of data center energy - Cooling systems:
30-40% of data center energy - Storage and networking: 10-20% of data center energy

mailto:david@openie.dev
mailto:dcharlot@ucsb.edu

The Hidden Energy Crisis in Computing Charlot (2026)

1.2 End-User Devices

The billions of smartphones, laptops, tablets, and IoT devices worldwide collectively consume
substantial energy [3]:

* 6.8+ billion smartphones running applications continuously

* 2 billion personal computers executing desktop software

* 15+ billion IoT devices performing embedded computations

Each inefficient app, each poorly optimized algorithm, each wasteful background process contributes

to aggregate energy demand.

1.3 Artificial Intelligence
Al workloads represent the fastest-growing segment of computational energy demand [4]:

* Training GPT-3 consumed approximately 1,287 MWh of electricity
* Training a large language model can emit 300+ tonnes of CO2
* Inference at scale multiplies training costs across millions of queries

* Global Al energy consumption may reach 134 TWh by 2027, comparable to the Netherlands [2]

2. The Software Factor

2.1 Why Software Matters

Hardware efficiency improvements have historically followed Moore’s Law: approximately 2x every
18-24 months. However, software inefficiency often negates these gains through what’s known as

Wirth’s Law: “Software is getting slower more rapidly than hardware is getting faster” [5].

* A 2x hardware improvement provides no benefit if software becomes 2x less efficient
* Software complexity tends to grow faster than hardware speed

* New abstraction layers add overhead without adding proportional value

2.2 The Language Layer

Programming languages are the foundation of all software. Their design decisions ripple through every
program written in them. A landmark 2017 study measured the energy consumption of 27

programming languages across 10 benchmark problems [6]:

The Hidden Energy Crisis in Computing Charlot (2026)

Memory Management - Garbage-collected languages (Java, Python, JavaScript, Go) incur energy
overhead for runtime memory management - Collection cycles cause CPU activity spikes and prevent
optimal power states - Studies show GC overhead ranges from 5-25% of total program energy

consumption, varying by workload intensity and heap pressure [7]

Runtime Systems - Interpreted languages execute 10-100x more instructions than compiled
equivalents - JIT compilation provides partial mitigation but adds its own overhead - Python consumes

75.88x more energy than C for equivalent computations [6]

Abstraction Overhead - High-level abstractions often compile to inefficient instruction sequences -

Virtual function calls prevent optimization - Generic programming can lead to code bloat

2.3 Measurement Challenges
A fundamental problem: most developers have no visibility into their software’s energy consumption.

* Profilers measure time, not energy
* Cloud bills show cost, not consumption

* No feedback loop exists for energy optimization

Without measurement, improvement is impossible.

3. The Path Forward

3.1 Energy-Aware Language Design
New programming languages can address energy efficiency from first principles:

Deterministic Resource Management - Ownership and borrowing systems eliminate garbage collec-
tion - Memory is freed at predictable points, enabling optimal power management - No runtime
overhead for memory safety - Languages like Rust demonstrate this approach achieves energy
efficiency comparable to C [6]

Energy Annotations - Allow developers to specify energy budgets for code sections - Compiler
estimates and checks budgets at compile time - Energy becomes a first-class concern, not an after-
thought

Efficient Default Choices - Value semantics by default (avoid heap allocation overhead) - Compile-

time computation where possible - Direct hardware access without abstraction penalties

The Hidden Energy Crisis in Computing Charlot (2026)

3.2 Heterogeneous Computing
Modern processors include specialized units for different workloads:

* GPUs: Parallel numerical computation (up to 10x more energy-efficient for suitable workloads) [8]
* TPUs/NPUs: Machine learning inference (up to 30-80x more efficient than CPUs for ML) [9]
» DSPs: Signal processing
* Secure enclaves: Cryptographic operations
Each specialized unit is dramatically more energy-efficient for its intended workload than a general-

purpose CPU. Languages that make heterogeneous computing accessible can achieve order-of-

magnitude energy savings.

3.3 Compiler Optimization for Energy
Traditional compilers optimize for speed. Energy-aware compilers can target different metrics [10]:

* Minimize memory traffic (DRAM access consumes ~100x more energy than cache access)
* Prefer SIMD operations (more work per instruction fetch)
* Enable processor power states (avoid blocking busy-waits)

* Reduce code size (instruction cache efficiency)
3.4 Measurement and Feedback

Making energy visible enables optimization:

» Hardware power monitoring integration (Intel RAPL, ARM Energy Probe) [11]
* Energy profiling tools
» Continuous integration energy tracking

* Energy regression detection

4. Empirical Evidence

4.1 Programming Language Energy Consumption

The following data is from Pereira et al.’s comprehensive study “Energy Efficiency across

Programming Languages” [6]:

The Hidden Energy Crisis in Computing Charlot (2026)

Language Relative Energy Relative Time Relative Memory
C 1.00 1.00 1.00
Rust 1.03 1.04 1.03
C++ 1.34 1.56 1.34
Java 1.98 1.89 6.01
Go 3.23 2.83 1.05
JavaScript 4.45 6.52 4.59
TypeScript 21.50 46.20 4.69
Python 75.88 71.90 2.80

4.2 Data Structure Selection

Data structure choice affects memory access patterns and cache behavior:

Structure Access Pattern Cache Efficiency
Linked List Random Poor

Array Sequential Excellent

Hash Table Random Moderate

B-Tree Localized Good

Cache-efficient data structures can reduce energy consumption by 50% or more for memory-bound
workloads [12].

4.3 The Business Case: Total Cost of Ownership

Energy efficiency translates directly to cost savings. For organizations operating at scale:

The Hidden Energy Crisis in Computing Charlot (2026)

Metric Calculation

Cloud compute costs AWS/GCP/Azure charge by CPU-hour; efficient code uses fewer hours
Data center electricity At $0.10/kWh, a 10 MW data center costs ~$8.7M/year in power

Cooling overhead Every watt of compute requires 0.5-1.0 additional watts for cooling (PUE)
Carbon costs Emerging carbon taxes ($50-150/tonne CO2) add to operational expenses

Example: A Python service rewritten in an energy-efficient language (up to 75x improvement based on
published benchmarks [6]) could reduce: - Cloud compute costs by 50-90% - Carbon footprint

proportionally - Cooling requirements in on-premise deployments

For CTOs evaluating technology choices, energy efficiency is no longer just an environmental

consideration; it’s a significant driver of operational expenditure.

5. Recommendations

For Individual Developers

1. Profile for energy, not just time—tools like PowerTOP, Intel Power Gadget, and perf can help [11]
2. Choose efficient algorithms and data structures

3. Consider language energy characteristics for energy-sensitive applications

4. Avoid unnecessary abstraction layers

5. Test on target hardware rather than assuming cloud resources are free

For Organizations

1. Include energy metrics in CI/CD pipelines

2. Set energy budgets for critical services

3. Evaluate language choices with energy in mind
4. Invest in energy measurement infrastructure

5. Consider total cost of ownership, including energy

The Hidden Energy Crisis in Computing Charlot (2026)

For the Industry

1. Develop energy measurement standards for software

2. Create energy efficiency benchmarks for languages and frameworks
3. Fund research into energy-aware compilation

4. Integrate energy education into computer science curricula

5. Reward energy efficiency in hiring and promotion

6. Conclusion

The computing industry’s energy footprint is substantial and growing. While hardware efficiency and
renewable energy are important, they are insufficient solutions alone. Software, and the programming

languages used to create it, must become more energy-efficient.

Sustainable computing is not about sacrifice or limitation. Energy-efficient software is often faster
software. Energy-aware design encourages better architecture. Sustainable computing can be excellent

computing.

The tools and techniques exist. The path forward is clear. What remains is the collective will to walk it.

References

[1] International Energy Agency. “Data Centres and Data Transmission Networks.” /EA4, 2024. https:/

www.lea.org/energy-system/buildings/data-centres-and-data-transmission-networks

[2] International Energy Agency. “Electricity 2024: Analysis and Forecast to 2026.” [EA, January 2024.
https://www.iea.org/reports/electricity-2024

[3] Statista. “Number of smartphone subscriptions worldwide from 2016 to 2028.” Statista, 2024. ht-

tps://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

[4] Patterson, D., Gonzalez, J., Le, Q., et al. “Carbon Emissions and Large Neural Network Training.”
arXiv:2104.10350, 2021. https://arxiv.org/abs/2104.10350

[5] Wirth, N. “A Plea for Lean Software.” Computer, vol. 28, no. 2, pp. 64-68, 1995. https://doi.org/
10.1109/2.348001

https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/reports/electricity-2024
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://arxiv.org/abs/2104.10350
https://doi.org/10.1109/2.348001
https://doi.org/10.1109/2.348001

The Hidden Energy Crisis in Computing Charlot (2026)

[6] Pereira, R., Couto, M., Ribeiro, F., et al. “Energy Efficiency across Programming Languages.” Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering
(SLE), 2017. https://joule.openie.dev/research/energy-efficiency-languages

[7] Pinto, G., Castor, F., Liu, Y.D. “Mining Questions About Software Energy Consumption.” Proceed-
ings of the 11th Working Conference on Mining Software Repositories (MSR), 2014. https://doi.org/
10.1145/2597073.2597110

[8] Mittal, S., Vetter, J.S. “A Survey of CPU-GPU Heterogeneous Computing Techniques.” ACM Com-
puting Surveys, vol. 47, no. 4, 2015. https://doi.org/10.1145/2788396

[9] Jouppi, N.P., Young, C., Patil, N., et al. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” Proceedings of the 44th Annual International Symposium on Computer Architecture
(ISCA), 2017. https://doi.org/10.1145/3079856.3080246

[10] Schulte, E., Dorn, J., Harding, S., et al. “Post-compiler Software Optimization for Reducing En-
ergy.” Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014. https://doi.org/10.1145/2541940.2541980

[11] Khan, K.N., Hirki, M., Niemi, T., et al. “RAPL in Action: Experiences in Using RAPL for Power
Measurements.” ACM Transactions on Modeling and Performance Evaluation of Computing Systems,
vol. 3, no. 2, 2018. https://doi.org/10.1145/3177754

[12] Drepper, U. “What Every Programmer Should Know About Memory.” Red Hat, Inc., 2007. ht-

tps://www.akkadia.org/drepper/cpumemory.pdf

[13] Charlot, D.J. “Metabolic Cascade Inference: Hardware-Aware Adaptive Routing for Energy-
Efficient AL.” OpenlE Technical Report, January 2026.

[14] Charlot, D.J. “The Al Inference Crisis: Why Current Approaches Are Unsustainable.” OpenlE
Technical Report, January 2026.

[15] Charlot, D.J. “Cortex: Neural-Symbolic Programming for Energy-Efficient Code Execution.” OpenlE Technical Report,
January 2026.

This whitepaper describes independent academic research focused on software’s environmental energy impact. Published

freely without patent protection under CC BY 4.0 license.

Contact: david@openie.dev | dcharlot@ucsb.edu Latest Updates: https://openie.dev/projects/joule

https://joule.openie.dev/research/energy-efficiency-languages
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2788396
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/2541940.2541980
https://doi.org/10.1145/3177754
https://www.akkadia.org/drepper/cpumemory.pdf
https://www.akkadia.org/drepper/cpumemory.pdf
mailto:david@openie.dev
mailto:dcharlot@ucsb.edu
https://openie.dev/projects/joule

	The Hidden Energy Crisis in Computing
	Abstract
	1. The Scale of Computing’s Energy Footprint
	1.1 Data Centers
	1.2 End-User Devices
	1.3 Artificial Intelligence

	2. The Software Factor
	2.1 Why Software Matters
	2.2 The Language Layer
	2.3 Measurement Challenges

	3. The Path Forward
	3.1 Energy-Aware Language Design
	3.2 Heterogeneous Computing
	3.3 Compiler Optimization for Energy
	3.4 Measurement and Feedback

	4. Empirical Evidence
	4.1 Programming Language Energy Consumption
	4.2 Data Structure Selection
	4.3 The Business Case: Total Cost of Ownership

	5. Recommendations
	For Individual Developers
	For Organizations
	For the Industry

	6. Conclusion
	References

