Joule Technical Overview

A Modern Language for Energy-Efficient Computing

David Jean Charlot, PhD Open Interface Engineering, Inc. (openlE) University of California, Santa
Barbara (UCSB) david@openie.dev | dcharlot@ucsb.edu

February 2026 | Version 1.0

This work is licensed under CC BY 4.0 | Open Access Research

Abstract

Joule is a systems programming language designed for energy-efficient, high-performance computing.
It combines modern language features—strong static typing, memory safety without garbage
collection, and first-class support for concurrent and heterogeneous computing—with an explicit focus
on energy awareness. This document provides a technical overview of Joule’s design, capabilities, and

the research foundations that inform its architecture.
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1. Introduction

1.1 Design Goals

Joule addresses a critical gap in the programming language landscape: energy efficiency as a
first-class concern. Research demonstrates that programming language choice can result in

energy consumption differences of up to 75x for equivalent computations [1]. Joule aims to

provide:

* Energy consumption comparable to C/Rust (within 5% overhead)
» Memory safety without garbage collection

* First-class support for heterogeneous computing (CPU/GPU/TPU)
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* Developer productivity through modern language features

1.2 Target Applications

* Systems software requiring predictable energy profiles
» Edge computing and [oT with power constraints
* High-performance computing with sustainability requirements

» AI/ML inference with energy budgets

1.3 Why Not Rust?

A fair question: Rust already provides memory safety without garbage collection and achieves energy
efficiency comparable to C [1]. Why create a new language?

Joule builds on Rust’s foundational insights while addressing different primary goals:
Aspect Rust Joule

Primary goal Memory safety Energy efficiency

Energy visibility None (external tools First-class ( @energy_budget , energy: :Meter )

only)
Heterogeneous Via external libraries First-class ( @kernel , @target(GPU) )
compute (CUDA, etc.)
Hardware tele- Manual integration Built-in RAPL/thermal awareness (adjusts scheduling as
metry hardware approaches thermal limits)
Compiler LLVM only Cranelift + LLVM + MLIR
backends
Al  accelerator Limited Native via MLIR backend
support

The key differentiators:

1. Energy as a language primitive: Rust optimizes for safety; Joule optimizes for energy. Energy budgets, profiling, and

thermal awareness are built into the language, not bolted on.

2. Heterogeneous computing by default: Writing GPU/TPU code in Rust requires external crates and significant

boilerplate. Joule’s @kernel annotation makes cross-hardware code as natural as writing a function.
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3. Hardware-aware compilation: Joule's MLIR backend enables targeting emerging Al accelerators (TPUs, NPUs) that
LLVM doesn t support well.

Rust remains an excellent choice for safety-critical systems. Joule is designed for energy-critical

systems where sustainability and hardware efficiency are primary concerns.

2. Core Language Features

2.1 Type System

Joule employs a strong, static type system with full type inference based on Hindley-Milner [2]:

// Type inference - the compiler determines types

let count = 42 // Inferred as Int
let name = "Joule" // Inferred as String
let ratio = 3.14 // Inferred as Floatoc4

// Explicit types when needed
let precise: Floatl28 = 3.141592653589793238

// Algebraic data types
enum Result<T, E> {
0k(T),
Err(BE),

// Pattern matching with exhaustiveness checking
match result {

Ok(value) => process(value),

ErrCerror) => handle(error),

Key characteristics: - Types checked at compile time, eliminating runtime type errors - Algebraic data
types (enums with associated data) - Pattern matching with exhaustiveness checking - Generic types

with trait bounds - No null references—Option types enforce explicit handling

2.2 Memory Management

Joule uses an ownership and borrowing system for memory management, building on theoretical
foundations established by RustBelt [3]:
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// Ownership - each value has exactly one owner

let data = Vector::new([1, 2, 3, 4, 5])

process(data) // Ownership transferred to process()
// data is no longer accessible here - compile error if used

// Borrowing - temporary access without ownership transfer
let data = Vector::new([1, 2, 3, 4, 5]

analyze(&data) // Immutable borrow

data.push(6) // Still accessible - borrow ended

// Mutable borrowing
let mut data = Vector::new([1, 2, 3, 4, 5])
modify(&mut data) // Mutable borrow - exclusive access

Benefits: - No garbage collector—deterministic memory management - No dangling pointers—com-
piler prevents use-after-free - No data races—the type system prevents concurrent mutation [4] - Pre-
dictable energy profile—no GC pauses or spikes

Research shows that garbage collection can account for 5-25% of program energy consumption,
depending on workload characteristics, heap size, and GC algorithm [5]. Memory-intensive
applications with frequent allocations see the highest overhead. By eliminating GC, Joule achieves

energy efficiency comparable to manually-managed languages while maintaining memory safety.

2.3 Energy Annotations

Joule introduces energy budgets as a language feature:
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// Specify an energy budget for a function

@energy_budget(100.microjoules)

fn process_sensor_reading(data: &SensorData) -> ProcessedData {
// Compiler estimates energy bounds based on hardware profile
// Warnings issued if estimated consumption may exceed budget

// Energy-aware profiling in development
@energy_profile
fh main() {

// Generates detailed energy consumption report

// Query energy consumption at runtime
let meter = energy::Meter::new()
meter.start()

compute_intensive_task()

let consumed = meter.stop()

Capabilities: - Compile-time energy bound estimation (using hardware profiles and static analysis
heuristics) - Runtime energy measurement via Intel RAPL, ARM Energy Probe [6] - Energy-aware

optimization hints to the compiler

Important caveat: Static energy estimation is inherently approximate due to hardware variability
(cache behavior, DVFS, thermal throttling). Joule provides best-effort bounds rather than formal

guarantees, complemented by runtime measurement for validation.

3. Concurrency Model

3.1 Structured Concurrency

Joule provides structured concurrency primitives ensuring concurrent operations complete within well-

defined scopes [7]:
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// Parallel iteration - automatic work distribution
let results = data
.par_iter(Q)
.map(litem| expensive_computation(item))
.collect()

// Async/await for I/0-bound operations

async fn fetch_allCurls: &[Url]) -> Vec<Response> {
let futures = urls.iter().map(lurll fetch(Curl));
join_all(futures).await

// Explicit task spawning with structured lifetimes
scope(ls!| {

s.spawn( || task_one());

s.spawn( || task_two());

// Both tasks guaranteed complete before scope exits

B

3.2 Channels and Message Passing

// Create a typed channel
let (sender, receiver) = channel::<Message>()

// Send from one task
sender.send(Message: :Data(payload))

// Receive in another

match receiver.recv() {
Message: :Data(payload) => process(payload),
Message: : Shutdown => break,

Safety guarantees: - No data races—the ownership system prevents them at compile time - Deadlock
avoidance—structured concurrency eliminates common patterns - Energy-efficient synchronization

—primitives designed to enable processor sleep states
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4. Heterogeneous Computing

4.1 First-Class Hardware Targets

Research shows that specialized processors can be 30—80x more energy-efficient than CPUs for suit-

able workloads [8]. Joule treats GPUs, TPUs, and accelerators as first-class targets:

// Define a computation portable across backends
@kernel
fn matrix_multiply(a: &Matrix, b: &Matrix) -> Matrix {
// Implementation compiles for CPU, GPU, and TPU
parallel_for (i, j) in (@..a.rows, 0..b.cols) {
result[i][j] = dot(Ca.row(i), b.col(j))
i

// Explicit placement when needed
@target(GPU)
fn gpu_accelerated_render(scene: &Scene) -> Image {

}

// Automatic placement based on workload and energy constraints
@auto_place(optimize_for: Energy)
fn flexible_computation(data: &LargeDataset) -> Results {

// Runtime selects most energy-efficient available hardware
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4.2 Hardware Abstraction

// Query available hardware

let devices = Hardware::available_devices()

for device in devices {

println!("{}: {} compute units, {} memory, {:.2} efficiency",

device.name,
device.compute_units,
device.memory,
device.energy_efficiency_rating)

// Select hardware based on energy efficiency
let target = Hardware::most_efficient_for(WorkloadType: :MatrixOps)

5. Compiler Architecture

5.1 Tri-Backend Design

Joule’s compiler supports three code generation backends to balance development speed, production

optimization, and emerging hardware support:

Backend Primary Use Case Characteristics

Cranelift Development Fast compilation (~10x faster than LLVM), quick iteration
LLVM Production Maximum optimization, broad platform support [9]
MLIR Emerging Hardware Al accelerators, custom silicon, TPUs [10]

# Development build (fast compilation)
joule build --backend cranelift

# Release build (maximum optimization)
joule build --release --backend 11lvm

# Target specific AI hardware
joule build --backend mlir --target tpu-v4
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5.2 Energy-Aware Optimization

Charlot (2026)

The compiler performs optimizations specifically targeting energy consumption [11]:

Optimization Energy Impact

Memory traffic minimization ~100x per DRAM vs cache access
SIMD vectorization 2-8x throughput/watt

Power state enablement Variable

Code density 10-20% cache efficiency

# Standard optimization levels

joule build -00 # No optimization (debugging)
joule build -02 # Full optimization

joule build -03 # Aggressive optimization

# Energy-focused optimization

joule build -0Oe # Optimize for energy efficiency
joule build -Oez # Energy + code size optimization

Mechanism

Loop tiling, data layout
Automatic vectorization
Avoid busy-waits, enable sleep

Instruction selection, inlining
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6. Standard Library

6.1 Core Modules

Module
core
collections
io
net
async
compute

energy

Charlot (2026)

Purpose

Fundamental types, traits, primitives

Data structures (Vec, Map, Set, etc.)

Input/output operations

Networking primitives

Asynchronous runtime

Heterogeneous computing abstractions

Energy measurement and budgeting

10



Joule Technical Overview Charlot (2026)

6.2 Energy Module

use energy::{Budget, Meter, Profile}

// Measure energy consumption

let meter = Meter::new()

meter.start()

perform_computation()

let consumption = meter.stop()

println!("Energy used: {} microjoules", consumption.microjoules())

// Check against budget
let budget = Budget::new(500.microjoules)
if consumption > budget {
log: :warn! ("Exceeded energy budget by {}", consumption - budget)
ks

// Profile a code section
let profile = Profile: :measure(l| {
complex_algorithm()

D)
profile.print_report() // Shows energy breakdown by function

7. Interoperability

7.1 C Foreign Function Interface

Joule provides zero-overhead C interoperability:

11
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// Declare external C functions
extern "C" {
fn legacy_algorithm(data: *const u8, len: usize) -> i32

// Export Joule functions for C consumption

@export

fn joule_entry_point(input: *const u8, len: usize) -> i32 {
// Safe Joule code wrapping unsafe FFI boundary
let slice = unsafe { slice::from_raw_parts(input, len) }
process(slice)

7.2 WebAssembly Support

# Compile to WebAssembly
joule build --target wasm32-unknown-unknown

# With WASI support for system interfaces
joule build --target wasm32-wasi

8. Platform Support

Tier 1 (Full support, CI-tested)
* Linux x86_64, aarch64
* macOS x86_64, aarch64 (Apple Silicon)
* Windows x86 64
Tier 2 (Builds, community-tested)
* FreeBSD x86 64
* WebAssembly (wasm32)
Tier 3 (Experimental)

* RISC-V (rv64gc)
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* Embedded ARM (Cortex-M)

9. Getting Started

Installation

# Unix-like systems
curl -sSf https://joule-lang.org/install.sh | sh

# Verify installation

joule --version

Hello World

// main.joule
fn main() {
println!("Hello, sustainable computing!™)

joule run main.joule
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