
Joule Technical Overview
A Modern Language for Energy-Efficient Computing

David Jean Charlot, PhD Open Interface Engineering, Inc. (openIE) University of California, Santa

Barbara (UCSB) david@openie.dev | dcharlot@ucsb.edu

February 2026 | Version 1.0

This work is licensed under CC BY 4.0 | Open Access Research

Abstract

Joule is a systems programming language designed for energy-efficient, high-performance computing.

It combines modern language features—strong static typing, memory safety without garbage

collection, and first-class support for concurrent and heterogeneous computing—with an explicit focus

on energy awareness. This document provides a technical overview of Joule’s design, capabilities, and

the research foundations that inform its architecture.

Keywords: Joule, systems programming, energy efficiency, type system, ownership, heterogeneous

computing, compiler architecture, LLVM, MLIR, Cranelift

1. Introduction

1.1 Design Goals

Joule addresses a critical gap in the programming language landscape: energy efficiency as a

first-class concern. Research demonstrates that programming language choice can result in

energy consumption differences of up to 75x for equivalent computations [1]. Joule aims to

provide:

Energy consumption comparable to C/Rust (within 5% overhead)

Memory safety without garbage collection

First-class support for heterogeneous computing (CPU/GPU/TPU)

•

•

•

1

mailto:david@openie.dev
mailto:dcharlot@ucsb.edu

Developer productivity through modern language features

1.2 Target Applications

Systems software requiring predictable energy profiles

Edge computing and IoT with power constraints

High-performance computing with sustainability requirements

AI/ML inference with energy budgets

1.3 Why Not Rust?

A fair question: Rust already provides memory safety without garbage collection and achieves energy

efficiency comparable to C [1]. Why create a new language?

Joule builds on Rust’s foundational insights while addressing different primary goals:

Aspect Rust Joule

Primary goal Memory safety Energy efficiency

Energy visibility None (external tools

only)

First-class (@energy_budget , energy::Meter)

Heterogeneous

compute

Via external libraries

(CUDA, etc.)

First-class (@kernel , @target(GPU))

Hardware tele‐

metry

Manual integration Built-in RAPL/thermal awareness (adjusts scheduling as

hardware approaches thermal limits)

Compiler

backends

LLVM only Cranelift + LLVM + MLIR

AI accelerator

support

Limited Native via MLIR backend

The key differentiators:

Energy as a language primitive: Rust optimizes for safety; Joule optimizes for energy. Energy budgets, profiling, and

thermal awareness are built into the language, not bolted on.

Heterogeneous computing by default: Writing GPU/TPU code in Rust requires external crates and significant

boilerplate. Joule’s @kernel annotation makes cross-hardware code as natural as writing a function.

•

•

•

•

•

1.

2.

Joule Technical Overview Charlot (2026)

2

Hardware-aware compilation: Joule’s MLIR backend enables targeting emerging AI accelerators (TPUs, NPUs) that

LLVM doesn’t support well.

Rust remains an excellent choice for safety-critical systems. Joule is designed for energy-critical

systems where sustainability and hardware efficiency are primary concerns.

2. Core Language Features

2.1 Type System

Joule employs a strong, static type system with full type inference based on Hindley-Milner [2]:

// Type inference - the compiler determines types
let count = 42 // Inferred as Int
let name = "Joule" // Inferred as String
let ratio = 3.14 // Inferred as Float64

// Explicit types when needed
let precise: Float128 = 3.141592653589793238

// Algebraic data types
enum Result<T, E> {
 Ok(T),
 Err(E),
}

// Pattern matching with exhaustiveness checking
match result {
 Ok(value) => process(value),
 Err(error) => handle(error),
}

Key characteristics: - Types checked at compile time, eliminating runtime type errors - Algebraic data

types (enums with associated data) - Pattern matching with exhaustiveness checking - Generic types

with trait bounds - No null references—Option types enforce explicit handling

2.2 Memory Management

Joule uses an ownership and borrowing system for memory management, building on theoretical

foundations established by RustBelt [3]:

3.

Joule Technical Overview Charlot (2026)

3

// Ownership - each value has exactly one owner
let data = Vector::new([1, 2, 3, 4, 5])
process(data) // Ownership transferred to process()
// data is no longer accessible here - compile error if used

// Borrowing - temporary access without ownership transfer
let data = Vector::new([1, 2, 3, 4, 5])
analyze(&data) // Immutable borrow
data.push(6) // Still accessible - borrow ended

// Mutable borrowing
let mut data = Vector::new([1, 2, 3, 4, 5])
modify(&mut data) // Mutable borrow - exclusive access

Benefits: - No garbage collector—deterministic memory management - No dangling pointers—com‐

piler prevents use-after-free - No data races—the type system prevents concurrent mutation [4] - Pre‐

dictable energy profile—no GC pauses or spikes

Research shows that garbage collection can account for 5–25% of program energy consumption,

depending on workload characteristics, heap size, and GC algorithm [5]. Memory-intensive

applications with frequent allocations see the highest overhead. By eliminating GC, Joule achieves

energy efficiency comparable to manually-managed languages while maintaining memory safety.

2.3 Energy Annotations

Joule introduces energy budgets as a language feature:

Joule Technical Overview Charlot (2026)

4

// Specify an energy budget for a function
@energy_budget(100.microjoules)
fn process_sensor_reading(data: &SensorData) -> ProcessedData {
 // Compiler estimates energy bounds based on hardware profile
 // Warnings issued if estimated consumption may exceed budget
 ...
}

// Energy-aware profiling in development
@energy_profile
fn main() {
 // Generates detailed energy consumption report
 ...
}

// Query energy consumption at runtime
let meter = energy::Meter::new()
meter.start()
compute_intensive_task()
let consumed = meter.stop()

Capabilities: - Compile-time energy bound estimation (using hardware profiles and static analysis

heuristics) - Runtime energy measurement via Intel RAPL, ARM Energy Probe [6] - Energy-aware

optimization hints to the compiler

Important caveat: Static energy estimation is inherently approximate due to hardware variability

(cache behavior, DVFS, thermal throttling). Joule provides best-effort bounds rather than formal

guarantees, complemented by runtime measurement for validation.

3. Concurrency Model

3.1 Structured Concurrency

Joule provides structured concurrency primitives ensuring concurrent operations complete within well-

defined scopes [7]:

Joule Technical Overview Charlot (2026)

5

// Parallel iteration - automatic work distribution
let results = data
 .par_iter()
 .map(|item| expensive_computation(item))
 .collect()

// Async/await for I/O-bound operations
async fn fetch_all(urls: &[Url]) -> Vec<Response> {
 let futures = urls.iter().map(|url| fetch(url));
 join_all(futures).await
}

// Explicit task spawning with structured lifetimes
scope(|s| {
 s.spawn(|| task_one());
 s.spawn(|| task_two());
 // Both tasks guaranteed complete before scope exits
})

3.2 Channels and Message Passing

// Create a typed channel
let (sender, receiver) = channel::<Message>()

// Send from one task
sender.send(Message::Data(payload))

// Receive in another
match receiver.recv() {
 Message::Data(payload) => process(payload),
 Message::Shutdown => break,
}

Safety guarantees: - No data races—the ownership system prevents them at compile time - Deadlock

avoidance—structured concurrency eliminates common patterns - Energy-efficient synchronization

—primitives designed to enable processor sleep states

Joule Technical Overview Charlot (2026)

6

4. Heterogeneous Computing

4.1 First-Class Hardware Targets

Research shows that specialized processors can be 30–80x more energy-efficient than CPUs for suit‐

able workloads [8]. Joule treats GPUs, TPUs, and accelerators as first-class targets:

// Define a computation portable across backends
@kernel
fn matrix_multiply(a: &Matrix, b: &Matrix) -> Matrix {
 // Implementation compiles for CPU, GPU, and TPU
 parallel_for (i, j) in (0..a.rows, 0..b.cols) {
 result[i][j] = dot(a.row(i), b.col(j))
 }
}

// Explicit placement when needed
@target(GPU)
fn gpu_accelerated_render(scene: &Scene) -> Image {
 ...
}

// Automatic placement based on workload and energy constraints
@auto_place(optimize_for: Energy)
fn flexible_computation(data: &LargeDataset) -> Results {
 // Runtime selects most energy-efficient available hardware
 ...
}

Joule Technical Overview Charlot (2026)

7

4.2 Hardware Abstraction

// Query available hardware
let devices = Hardware::available_devices()
for device in devices {
 println!("{}: {} compute units, {} memory, {:.2} efficiency",
 device.name,
 device.compute_units,
 device.memory,
 device.energy_efficiency_rating)
}

// Select hardware based on energy efficiency
let target = Hardware::most_efficient_for(WorkloadType::MatrixOps)

5. Compiler Architecture

5.1 Tri-Backend Design

Joule’s compiler supports three code generation backends to balance development speed, production

optimization, and emerging hardware support:

Backend Primary Use Case Characteristics

Cranelift Development Fast compilation (~10x faster than LLVM), quick iteration

LLVM Production Maximum optimization, broad platform support [9]

MLIR Emerging Hardware AI accelerators, custom silicon, TPUs [10]

Development build (fast compilation)
joule build --backend cranelift

Release build (maximum optimization)
joule build --release --backend llvm

Target specific AI hardware
joule build --backend mlir --target tpu-v4

Joule Technical Overview Charlot (2026)

8

5.2 Energy-Aware Optimization

The compiler performs optimizations specifically targeting energy consumption [11]:

Optimization Energy Impact Mechanism

Memory traffic minimization ~100x per DRAM vs cache access Loop tiling, data layout

SIMD vectorization 2-8x throughput/watt Automatic vectorization

Power state enablement Variable Avoid busy-waits, enable sleep

Code density 10-20% cache efficiency Instruction selection, inlining

Standard optimization levels
joule build -O0 # No optimization (debugging)
joule build -O2 # Full optimization
joule build -O3 # Aggressive optimization

Energy-focused optimization
joule build -Oe # Optimize for energy efficiency
joule build -Oez # Energy + code size optimization

Joule Technical Overview Charlot (2026)

9

6. Standard Library

6.1 Core Modules

Module Purpose

core Fundamental types, traits, primitives

collections Data structures (Vec, Map, Set, etc.)

io Input/output operations

net Networking primitives

async Asynchronous runtime

compute Heterogeneous computing abstractions

energy Energy measurement and budgeting

Joule Technical Overview Charlot (2026)

10

6.2 Energy Module

use energy::{Budget, Meter, Profile}

// Measure energy consumption
let meter = Meter::new()
meter.start()
perform_computation()
let consumption = meter.stop()
println!("Energy used: {} microjoules", consumption.microjoules())

// Check against budget
let budget = Budget::new(500.microjoules)
if consumption > budget {
 log::warn!("Exceeded energy budget by {}", consumption - budget)
}

// Profile a code section
let profile = Profile::measure(|| {
 complex_algorithm()
})
profile.print_report() // Shows energy breakdown by function

7. Interoperability

7.1 C Foreign Function Interface

Joule provides zero-overhead C interoperability:

Joule Technical Overview Charlot (2026)

11

// Declare external C functions
extern "C" {
 fn legacy_algorithm(data: *const u8, len: usize) -> i32
}

// Export Joule functions for C consumption
@export
fn joule_entry_point(input: *const u8, len: usize) -> i32 {
 // Safe Joule code wrapping unsafe FFI boundary
 let slice = unsafe { slice::from_raw_parts(input, len) }
 process(slice)
}

7.2 WebAssembly Support

Compile to WebAssembly
joule build --target wasm32-unknown-unknown

With WASI support for system interfaces
joule build --target wasm32-wasi

8. Platform Support

Tier 1 (Full support, CI-tested)

Linux x86_64, aarch64

macOS x86_64, aarch64 (Apple Silicon)

Windows x86_64

Tier 2 (Builds, community-tested)

FreeBSD x86_64

WebAssembly (wasm32)

Tier 3 (Experimental)

RISC-V (rv64gc)

•

•

•

•

•

•

Joule Technical Overview Charlot (2026)

12

Embedded ARM (Cortex-M)

9. Getting Started

Installation

Unix-like systems
curl -sSf https://joule-lang.org/install.sh | sh

Verify installation
joule --version

Hello World

// main.joule
fn main() {
 println!("Hello, sustainable computing!")
}

joule run main.joule

References

[1] Pereira, R., Couto, M., Ribeiro, F., et al. “Energy Efficiency across Programming Languages.” Pro‐

ceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering

(SLE), 2017. https://joule.openie.dev/research/energy-efficiency-languages

[2] Milner, R. “A Theory of Type Polymorphism in Programming.” Journal of Computer and System

Sciences, vol. 17, no. 3, pp. 348-375, 1978. https://doi.org/10.1016/0022-0000(78)90014-4

[3] Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D. “RustBelt: Securing the Foundations of the Rust

Programming Language.” Proceedings of the ACM on Programming Languages, vol. 2, no. POPL,

2018. https://doi.org/10.1145/3158154

[4] Boyapati, C., Lee, R., Rinard, M. “Ownership Types for Safe Programming: Preventing Data Races

and Deadlocks.” Proceedings of OOPSLA, 2002. https://doi.org/10.1145/582419.582440

•

Joule Technical Overview Charlot (2026)

13

https://joule.openie.dev/research/energy-efficiency-languages
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3158154
https://doi.org/10.1145/582419.582440

[5] Pinto, G., Castor, F., Liu, Y.D. “Mining Questions About Software Energy Consumption.” Proceed‐

ings of the 11th Working Conference on Mining Software Repositories (MSR), 2014. https://doi.org/

10.1145/2597073.2597110

[6] Khan, K.N., Hirki, M., Niemi, T., et al. “RAPL in Action: Experiences in Using RAPL for Power

Measurements.” ACM TOMPECS, vol. 3, no. 2, 2018. https://doi.org/10.1145/3177754

[7] Sutter, H. “Structured Concurrency.” ISO/IEC JTC1/SC22/WG21, 2021. https://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2021/p2300r0.html

[8] Jouppi, N.P., et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit.” Proceedings

of the 44th Annual International Symposium on Computer Architecture (ISCA), 2017. https://doi.org/

10.1145/3079856.3080246

[9] Lattner, C., Adve, V. “LLVM: A Compilation Framework for Lifelong Program Analysis & Trans‐

formation.” Proceedings of CGO, 2004. https://doi.org/10.1109/CGO.2004.1281665

[10] Lattner, C., et al. “MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.”

Proceedings of CGO, 2021. https://doi.org/10.1109/CGO51591.2021.9370308

[11] Schulte, E., Dorn, J., Harding, S., et al. “Post-compiler Software Optimization for Reducing En‐

ergy.” Proceedings of ASPLOS, 2014. https://doi.org/10.1145/2541940.2541980

[12] Charlot, D.J. “Bounded Entropy in Formal Languages: A Mathematical Foundation for

Deterministic Code Generation.” OpenIE Technical Report, December 2025.

[13] Charlot, D.J. “Cortex: Neural-Symbolic Programming for Energy-Efficient Code Execution.”

OpenIE Technical Report, January 2026.

[14] Charlot, D.J. “Metabolic Cascade Inference: Hardware-Aware Adaptive Routing for Energy-

Efficient AI.” OpenIE Technical Report, January 2026.

[15] Charlot, D.J. “Cortex: The AI-First Programming Language Based on Selective State Spaces.” OpenIE Technical

Report, February 2026.

This whitepaper describes independent academic research focused on energy-efficient programming language design.

Published freely without patent protection under CC BY 4.0 license.

Contact: david@openie.dev | dcharlot@ucsb.edu Latest Updates: https://openie.dev/projects/joule

Joule Technical Overview Charlot (2026)

14

https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/3177754
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2300r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2300r0.html
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2541940.2541980
mailto:david@openie.dev
mailto:dcharlot@ucsb.edu
https://openie.dev/projects/joule

	Joule Technical Overview
	Abstract
	1. Introduction
	1.1 Design Goals
	1.2 Target Applications
	1.3 Why Not Rust?

	2. Core Language Features
	2.1 Type System
	2.2 Memory Management
	2.3 Energy Annotations

	3. Concurrency Model
	3.1 Structured Concurrency
	3.2 Channels and Message Passing

	4. Heterogeneous Computing
	4.1 First-Class Hardware Targets
	4.2 Hardware Abstraction

	5. Compiler Architecture
	5.1 Tri-Backend Design
	5.2 Energy-Aware Optimization

	6. Standard Library
	6.1 Core Modules
	6.2 Energy Module

	7. Interoperability
	7.1 C Foreign Function Interface
	7.2 WebAssembly Support

	8. Platform Support
	Tier 1 (Full support, CI-tested)
	Tier 2 (Builds, community-tested)
	Tier 3 (Experimental)

	9. Getting Started
	Installation
	Hello World

	References

