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Abstract

Joule is a systems programming language designed for energy-efficient, high-performance computing.

It  combines  modern  language  features—strong  static  typing,  memory  safety  without  garbage

collection, and first-class support for concurrent and heterogeneous computing—with an explicit focus

on energy awareness. This document provides a technical overview of Joule’s design, capabilities, and

the research foundations that inform its architecture.

Keywords: Joule, systems programming, energy efficiency, type system, ownership, heterogeneous

computing, compiler architecture, LLVM, MLIR, Cranelift

1. Introduction

1.1 Design Goals

Joule addresses a critical gap in the programming language landscape: energy efficiency as a

first-class concern.  Research demonstrates that  programming language choice can result  in

energy consumption differences of up to  75x for equivalent computations [1]. Joule aims to

provide:

Energy consumption comparable to C/Rust (within 5% overhead)

Memory safety without garbage collection

First-class support for heterogeneous computing (CPU/GPU/TPU)

• 

• 

• 
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Developer productivity through modern language features

1.2 Target Applications

Systems software requiring predictable energy profiles

Edge computing and IoT with power constraints

High-performance computing with sustainability requirements

AI/ML inference with energy budgets

1.3 Why Not Rust?

A fair question: Rust already provides memory safety without garbage collection and achieves energy

efficiency comparable to C [1]. Why create a new language?

Joule builds on Rust’s foundational insights while addressing different primary goals:

Aspect Rust Joule

Primary goal Memory safety Energy efficiency

Energy visibility None  (external  tools

only)

First-class ( @energy_budget , energy::Meter )

Heterogeneous

compute

Via  external  libraries

(CUDA, etc.)

First-class ( @kernel , @target(GPU) )

Hardware  tele‐

metry

Manual integration Built-in RAPL/thermal awareness (adjusts scheduling as

hardware approaches thermal limits)

Compiler

backends

LLVM only Cranelift + LLVM + MLIR

AI  accelerator

support

Limited Native via MLIR backend

The key differentiators:

Energy as a language primitive: Rust optimizes for safety; Joule optimizes for energy. Energy budgets, profiling, and

thermal awareness are built into the language, not bolted on.

Heterogeneous computing by default: Writing GPU/TPU code in Rust requires external crates and significant

boilerplate. Joule’s @kernel  annotation makes cross-hardware code as natural as writing a function.

• 

• 

• 

• 

• 
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Hardware-aware compilation: Joule’s MLIR backend enables targeting emerging AI accelerators (TPUs, NPUs) that

LLVM doesn’t support well.

Rust  remains  an  excellent  choice  for  safety-critical  systems.  Joule  is  designed  for  energy-critical

systems where sustainability and hardware efficiency are primary concerns.

2. Core Language Features

2.1 Type System

Joule employs a strong, static type system with full type inference based on Hindley-Milner [2]:

// Type inference - the compiler determines types
let count = 42              // Inferred as Int
let name = "Joule"          // Inferred as String
let ratio = 3.14            // Inferred as Float64

// Explicit types when needed
let precise: Float128 = 3.141592653589793238

// Algebraic data types
enum Result<T, E> {
    Ok(T),
    Err(E),
}

// Pattern matching with exhaustiveness checking
match result {
    Ok(value) => process(value),
    Err(error) => handle(error),
}

Key characteristics: - Types checked at compile time, eliminating runtime type errors - Algebraic data

types (enums with associated data) - Pattern matching with exhaustiveness checking - Generic types

with trait bounds - No null references—Option types enforce explicit handling

2.2 Memory Management

Joule  uses  an  ownership  and  borrowing  system for  memory  management,  building  on  theoretical

foundations established by RustBelt [3]:

3. 
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// Ownership - each value has exactly one owner
let data = Vector::new([1, 2, 3, 4, 5])
process(data)        // Ownership transferred to process()
// data is no longer accessible here - compile error if used

// Borrowing - temporary access without ownership transfer
let data = Vector::new([1, 2, 3, 4, 5])
analyze(&data)       // Immutable borrow
data.push(6)         // Still accessible - borrow ended

// Mutable borrowing
let mut data = Vector::new([1, 2, 3, 4, 5])
modify(&mut data)    // Mutable borrow - exclusive access

Benefits: - No garbage collector—deterministic memory management - No dangling pointers—com‐

piler prevents use-after-free - No data races—the type system prevents concurrent mutation [4] - Pre‐

dictable energy profile—no GC pauses or spikes

Research  shows  that  garbage  collection  can  account  for  5–25% of  program energy  consumption,

depending  on  workload  characteristics,  heap  size,  and  GC  algorithm  [5].  Memory-intensive

applications with frequent allocations see the highest overhead. By eliminating GC, Joule achieves

energy efficiency comparable to manually-managed languages while maintaining memory safety.

2.3 Energy Annotations

Joule introduces energy budgets as a language feature:
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// Specify an energy budget for a function
@energy_budget(100.microjoules)
fn process_sensor_reading(data: &SensorData) -> ProcessedData {
    // Compiler estimates energy bounds based on hardware profile
    // Warnings issued if estimated consumption may exceed budget
    ...
}

// Energy-aware profiling in development
@energy_profile
fn main() {
    // Generates detailed energy consumption report
    ...
}

// Query energy consumption at runtime
let meter = energy::Meter::new()
meter.start()
compute_intensive_task()
let consumed = meter.stop()

Capabilities: - Compile-time energy bound estimation (using hardware profiles and static analysis

heuristics) - Runtime energy measurement via Intel RAPL, ARM Energy Probe [6] - Energy-aware

optimization hints to the compiler

Important caveat: Static energy estimation is inherently approximate due to hardware variability

(cache behavior, DVFS, thermal throttling). Joule provides best-effort bounds rather than formal

guarantees, complemented by runtime measurement for validation.

3. Concurrency Model

3.1 Structured Concurrency

Joule provides structured concurrency primitives ensuring concurrent operations complete within well-

defined scopes [7]:
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// Parallel iteration - automatic work distribution
let results = data
    .par_iter()
    .map(|item| expensive_computation(item))
    .collect()

// Async/await for I/O-bound operations
async fn fetch_all(urls: &[Url]) -> Vec<Response> {
    let futures = urls.iter().map(|url| fetch(url));
    join_all(futures).await
}

// Explicit task spawning with structured lifetimes
scope(|s| {
    s.spawn(|| task_one());
    s.spawn(|| task_two());
    // Both tasks guaranteed complete before scope exits
})

3.2 Channels and Message Passing

// Create a typed channel
let (sender, receiver) = channel::<Message>()

// Send from one task
sender.send(Message::Data(payload))

// Receive in another
match receiver.recv() {
    Message::Data(payload) => process(payload),
    Message::Shutdown => break,
}

Safety guarantees: - No data races—the ownership system prevents them at compile time - Deadlock

avoidance—structured concurrency eliminates common patterns -  Energy-efficient synchronization

—primitives designed to enable processor sleep states
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4. Heterogeneous Computing

4.1 First-Class Hardware Targets

Research shows that specialized processors can be 30–80x more energy-efficient than CPUs for suit‐

able workloads [8]. Joule treats GPUs, TPUs, and accelerators as first-class targets:

// Define a computation portable across backends
@kernel
fn matrix_multiply(a: &Matrix, b: &Matrix) -> Matrix {
    // Implementation compiles for CPU, GPU, and TPU
    parallel_for (i, j) in (0..a.rows, 0..b.cols) {
        result[i][j] = dot(a.row(i), b.col(j))
    }
}

// Explicit placement when needed
@target(GPU)
fn gpu_accelerated_render(scene: &Scene) -> Image {
    ...
}

// Automatic placement based on workload and energy constraints
@auto_place(optimize_for: Energy)
fn flexible_computation(data: &LargeDataset) -> Results {
    // Runtime selects most energy-efficient available hardware
    ...
}
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4.2 Hardware Abstraction

// Query available hardware
let devices = Hardware::available_devices()
for device in devices {
    println!("{}: {} compute units, {} memory, {:.2} efficiency",
             device.name,
             device.compute_units,
             device.memory,
             device.energy_efficiency_rating)
}

// Select hardware based on energy efficiency
let target = Hardware::most_efficient_for(WorkloadType::MatrixOps)

5. Compiler Architecture

5.1 Tri-Backend Design

Joule’s compiler supports three code generation backends to balance development speed, production

optimization, and emerging hardware support:

Backend Primary Use Case Characteristics

Cranelift Development Fast compilation (~10x faster than LLVM), quick iteration

LLVM Production Maximum optimization, broad platform support [9]

MLIR Emerging Hardware AI accelerators, custom silicon, TPUs [10]

# Development build (fast compilation)
joule build --backend cranelift

# Release build (maximum optimization)
joule build --release --backend llvm

# Target specific AI hardware
joule build --backend mlir --target tpu-v4
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5.2 Energy-Aware Optimization

The compiler performs optimizations specifically targeting energy consumption [11]:

Optimization Energy Impact Mechanism

Memory traffic minimization ~100x per DRAM vs cache access Loop tiling, data layout

SIMD vectorization 2-8x throughput/watt Automatic vectorization

Power state enablement Variable Avoid busy-waits, enable sleep

Code density 10-20% cache efficiency Instruction selection, inlining

# Standard optimization levels
joule build -O0    # No optimization (debugging)
joule build -O2    # Full optimization
joule build -O3    # Aggressive optimization

# Energy-focused optimization
joule build -Oe    # Optimize for energy efficiency
joule build -Oez   # Energy + code size optimization
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6. Standard Library

6.1 Core Modules

Module Purpose

core Fundamental types, traits, primitives

collections Data structures (Vec, Map, Set, etc.)

io Input/output operations

net Networking primitives

async Asynchronous runtime

compute Heterogeneous computing abstractions

energy Energy measurement and budgeting
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6.2 Energy Module

use energy::{Budget, Meter, Profile}

// Measure energy consumption
let meter = Meter::new()
meter.start()
perform_computation()
let consumption = meter.stop()
println!("Energy used: {} microjoules", consumption.microjoules())

// Check against budget
let budget = Budget::new(500.microjoules)
if consumption > budget {
    log::warn!("Exceeded energy budget by {}", consumption - budget)
}

// Profile a code section
let profile = Profile::measure(|| {
    complex_algorithm()
})
profile.print_report()  // Shows energy breakdown by function

7. Interoperability

7.1 C Foreign Function Interface

Joule provides zero-overhead C interoperability:

Joule Technical Overview Charlot (2026)

11



// Declare external C functions
extern "C" {
    fn legacy_algorithm(data: *const u8, len: usize) -> i32
}

// Export Joule functions for C consumption
@export
fn joule_entry_point(input: *const u8, len: usize) -> i32 {
    // Safe Joule code wrapping unsafe FFI boundary
    let slice = unsafe { slice::from_raw_parts(input, len) }
    process(slice)
}

7.2 WebAssembly Support

# Compile to WebAssembly
joule build --target wasm32-unknown-unknown

# With WASI support for system interfaces
joule build --target wasm32-wasi

8. Platform Support

Tier 1 (Full support, CI-tested)

Linux x86_64, aarch64

macOS x86_64, aarch64 (Apple Silicon)

Windows x86_64

Tier 2 (Builds, community-tested)

FreeBSD x86_64

WebAssembly (wasm32)

Tier 3 (Experimental)

RISC-V (rv64gc)

• 

• 

• 

• 

• 

• 
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Embedded ARM (Cortex-M)

9. Getting Started

Installation

# Unix-like systems
curl -sSf https://joule-lang.org/install.sh | sh

# Verify installation
joule --version

Hello World

// main.joule
fn main() {
    println!("Hello, sustainable computing!")
}

joule run main.joule
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