Joule Technical Overview

A Modern Language for Energy-Efficient Computing

David Jean Charlot, PhD Open Interface Engineering, Inc. (openlE) University of California, Santa
Barbara (UCSB) david@openie.dev | dcharlot@ucsb.edu

February 2026 | Version 1.0

This work is licensed under CC BY 4.0 | Open Access Research

Abstract

Joule is a systems programming language designed for energy-efficient, high-performance computing.
It combines modern language features—strong static typing, memory safety without garbage
collection, and first-class support for concurrent and heterogeneous computing—with an explicit focus
on energy awareness. This document provides a technical overview of Joule’s design, capabilities, and

the research foundations that inform its architecture.

Keywords: Joule, systems programming, energy efficiency, type system, ownership, heterogeneous
computing, compiler architecture, LLVM, MLIR, Cranelift

1. Introduction

1.1 Design Goals

Joule addresses a critical gap in the programming language landscape: energy efficiency as a
first-class concern. Research demonstrates that programming language choice can result in

energy consumption differences of up to 75x for equivalent computations [1]. Joule aims to

provide:

* Energy consumption comparable to C/Rust (within 5% overhead)
» Memory safety without garbage collection

* First-class support for heterogeneous computing (CPU/GPU/TPU)

mailto:david@openie.dev
mailto:dcharlot@ucsb.edu

Joule Technical Overview Charlot (2026)

* Developer productivity through modern language features

1.2 Target Applications

* Systems software requiring predictable energy profiles
» Edge computing and [oT with power constraints
* High-performance computing with sustainability requirements

» AI/ML inference with energy budgets

1.3 Why Not Rust?

A fair question: Rust already provides memory safety without garbage collection and achieves energy
efficiency comparable to C [1]. Why create a new language?

Joule builds on Rust’s foundational insights while addressing different primary goals:
Aspect Rust Joule

Primary goal Memory safety Energy efficiency

Energy visibility None (external tools First-class (@energy_budget , energy: :Meter)

only)
Heterogeneous Via external libraries First-class (@kernel , @target(GPU))
compute (CUDA, etc.)
Hardware tele- Manual integration Built-in RAPL/thermal awareness (adjusts scheduling as
metry hardware approaches thermal limits)
Compiler LLVM only Cranelift + LLVM + MLIR
backends
Al accelerator Limited Native via MLIR backend
support

The key differentiators:

1. Energy as a language primitive: Rust optimizes for safety; Joule optimizes for energy. Energy budgets, profiling, and

thermal awareness are built into the language, not bolted on.

2. Heterogeneous computing by default: Writing GPU/TPU code in Rust requires external crates and significant

boilerplate. Joule’s @kernel annotation makes cross-hardware code as natural as writing a function.

Joule Technical Overview Charlot (2026)

3. Hardware-aware compilation: Joule's MLIR backend enables targeting emerging Al accelerators (TPUs, NPUs) that
LLVM doesn t support well.

Rust remains an excellent choice for safety-critical systems. Joule is designed for energy-critical

systems where sustainability and hardware efficiency are primary concerns.

2. Core Language Features

2.1 Type System

Joule employs a strong, static type system with full type inference based on Hindley-Milner [2]:

// Type inference - the compiler determines types

let count = 42 // Inferred as Int
let name = "Joule" // Inferred as String
let ratio = 3.14 // Inferred as Floatoc4

// Explicit types when needed
let precise: Floatl28 = 3.141592653589793238

// Algebraic data types
enum Result<T, E> {
0k(T),
Err(BE),

// Pattern matching with exhaustiveness checking
match result {

Ok(value) => process(value),

ErrCerror) => handle(error),

Key characteristics: - Types checked at compile time, eliminating runtime type errors - Algebraic data
types (enums with associated data) - Pattern matching with exhaustiveness checking - Generic types

with trait bounds - No null references—Option types enforce explicit handling

2.2 Memory Management

Joule uses an ownership and borrowing system for memory management, building on theoretical
foundations established by RustBelt [3]:

Joule Technical Overview Charlot (2026)

// Ownership - each value has exactly one owner

let data = Vector::new([1, 2, 3, 4, 5])

process(data) // Ownership transferred to process()
// data is no longer accessible here - compile error if used

// Borrowing - temporary access without ownership transfer
let data = Vector::new([1, 2, 3, 4, 5]

analyze(&data) // Immutable borrow

data.push(6) // Still accessible - borrow ended

// Mutable borrowing
let mut data = Vector::new([1, 2, 3, 4, 5])
modify(&mut data) // Mutable borrow - exclusive access

Benefits: - No garbage collector—deterministic memory management - No dangling pointers—com-
piler prevents use-after-free - No data races—the type system prevents concurrent mutation [4] - Pre-
dictable energy profile—no GC pauses or spikes

Research shows that garbage collection can account for 5-25% of program energy consumption,
depending on workload characteristics, heap size, and GC algorithm [5]. Memory-intensive
applications with frequent allocations see the highest overhead. By eliminating GC, Joule achieves

energy efficiency comparable to manually-managed languages while maintaining memory safety.

2.3 Energy Annotations

Joule introduces energy budgets as a language feature:

Joule Technical Overview Charlot (2026)

// Specify an energy budget for a function

@energy_budget(100.microjoules)

fn process_sensor_reading(data: &SensorData) -> ProcessedData {
// Compiler estimates energy bounds based on hardware profile
// Warnings issued if estimated consumption may exceed budget

// Energy-aware profiling in development
@energy_profile
fh main() {

// Generates detailed energy consumption report

// Query energy consumption at runtime
let meter = energy::Meter::new()
meter.start()

compute_intensive_task()

let consumed = meter.stop()

Capabilities: - Compile-time energy bound estimation (using hardware profiles and static analysis
heuristics) - Runtime energy measurement via Intel RAPL, ARM Energy Probe [6] - Energy-aware

optimization hints to the compiler

Important caveat: Static energy estimation is inherently approximate due to hardware variability
(cache behavior, DVFS, thermal throttling). Joule provides best-effort bounds rather than formal

guarantees, complemented by runtime measurement for validation.

3. Concurrency Model

3.1 Structured Concurrency

Joule provides structured concurrency primitives ensuring concurrent operations complete within well-

defined scopes [7]:

Joule Technical Overview Charlot (2026)

// Parallel iteration - automatic work distribution
let results = data
.par_iter(Q)
.map(litem| expensive_computation(item))
.collect()

// Async/await for I/0-bound operations

async fn fetch_allCurls: &[Url]) -> Vec<Response> {
let futures = urls.iter().map(lurll fetch(Curl));
join_all(futures).await

// Explicit task spawning with structured lifetimes
scope(ls!| {

s.spawn(|| task_one());

s.spawn(|| task_two());

// Both tasks guaranteed complete before scope exits

B

3.2 Channels and Message Passing

// Create a typed channel
let (sender, receiver) = channel::<Message>()

// Send from one task
sender.send(Message: :Data(payload))

// Receive in another

match receiver.recv() {
Message: :Data(payload) => process(payload),
Message: : Shutdown => break,

Safety guarantees: - No data races—the ownership system prevents them at compile time - Deadlock
avoidance—structured concurrency eliminates common patterns - Energy-efficient synchronization

—primitives designed to enable processor sleep states

Joule Technical Overview Charlot (2026)

4. Heterogeneous Computing

4.1 First-Class Hardware Targets

Research shows that specialized processors can be 30—80x more energy-efficient than CPUs for suit-

able workloads [8]. Joule treats GPUs, TPUs, and accelerators as first-class targets:

// Define a computation portable across backends
@kernel
fn matrix_multiply(a: &Matrix, b: &Matrix) -> Matrix {
// Implementation compiles for CPU, GPU, and TPU
parallel_for (i, j) in (@..a.rows, 0..b.cols) {
result[i][j] = dot(Ca.row(i), b.col(j))
i

// Explicit placement when needed
@target(GPU)
fn gpu_accelerated_render(scene: &Scene) -> Image {

}

// Automatic placement based on workload and energy constraints
@auto_place(optimize_for: Energy)
fn flexible_computation(data: &LargeDataset) -> Results {

// Runtime selects most energy-efficient available hardware

Joule Technical Overview Charlot (2026)

4.2 Hardware Abstraction

// Query available hardware

let devices = Hardware::available_devices()

for device in devices {

println!("{}: {} compute units, {} memory, {:.2} efficiency",

device.name,
device.compute_units,
device.memory,
device.energy_efficiency_rating)

// Select hardware based on energy efficiency
let target = Hardware::most_efficient_for(WorkloadType: :MatrixOps)

5. Compiler Architecture

5.1 Tri-Backend Design

Joule’s compiler supports three code generation backends to balance development speed, production

optimization, and emerging hardware support:

Backend Primary Use Case Characteristics

Cranelift Development Fast compilation (~10x faster than LLVM), quick iteration
LLVM Production Maximum optimization, broad platform support [9]
MLIR Emerging Hardware Al accelerators, custom silicon, TPUs [10]

Development build (fast compilation)
joule build --backend cranelift

Release build (maximum optimization)
joule build --release --backend 11lvm

Target specific AI hardware
joule build --backend mlir --target tpu-v4

Joule Technical Overview

5.2 Energy-Aware Optimization

Charlot (2026)

The compiler performs optimizations specifically targeting energy consumption [11]:

Optimization Energy Impact

Memory traffic minimization ~100x per DRAM vs cache access
SIMD vectorization 2-8x throughput/watt

Power state enablement Variable

Code density 10-20% cache efficiency

Standard optimization levels

joule build -00 # No optimization (debugging)
joule build -02 # Full optimization

joule build -03 # Aggressive optimization

Energy-focused optimization

joule build -0Oe # Optimize for energy efficiency
joule build -Oez # Energy + code size optimization

Mechanism

Loop tiling, data layout
Automatic vectorization
Avoid busy-waits, enable sleep

Instruction selection, inlining

Joule Technical Overview

6. Standard Library

6.1 Core Modules

Module
core
collections
io
net
async
compute

energy

Charlot (2026)

Purpose

Fundamental types, traits, primitives

Data structures (Vec, Map, Set, etc.)

Input/output operations

Networking primitives

Asynchronous runtime

Heterogeneous computing abstractions

Energy measurement and budgeting

10

Joule Technical Overview Charlot (2026)

6.2 Energy Module

use energy::{Budget, Meter, Profile}

// Measure energy consumption

let meter = Meter::new()

meter.start()

perform_computation()

let consumption = meter.stop()

println!("Energy used: {} microjoules", consumption.microjoules())

// Check against budget
let budget = Budget::new(500.microjoules)
if consumption > budget {
log: :warn! ("Exceeded energy budget by {}", consumption - budget)
ks

// Profile a code section
let profile = Profile: :measure(l| {
complex_algorithm()

D)
profile.print_report() // Shows energy breakdown by function

7. Interoperability

7.1 C Foreign Function Interface

Joule provides zero-overhead C interoperability:

11

Joule Technical Overview Charlot (2026)

// Declare external C functions
extern "C" {
fn legacy_algorithm(data: *const u8, len: usize) -> i32

// Export Joule functions for C consumption

@export

fn joule_entry_point(input: *const u8, len: usize) -> i32 {
// Safe Joule code wrapping unsafe FFI boundary
let slice = unsafe { slice::from_raw_parts(input, len) }
process(slice)

7.2 WebAssembly Support

Compile to WebAssembly
joule build --target wasm32-unknown-unknown

With WASI support for system interfaces
joule build --target wasm32-wasi

8. Platform Support

Tier 1 (Full support, CI-tested)
* Linux x86_64, aarch64
* macOS x86_64, aarch64 (Apple Silicon)
* Windows x86 64
Tier 2 (Builds, community-tested)
* FreeBSD x86 64
* WebAssembly (wasm32)
Tier 3 (Experimental)

* RISC-V (rv64gc)

12

Joule Technical Overview Charlot (2026)

* Embedded ARM (Cortex-M)

9. Getting Started

Installation

Unix-like systems
curl -sSf https://joule-lang.org/install.sh | sh

Verify installation

joule --version

Hello World

// main.joule
fn main() {
println!("Hello, sustainable computing!™)

joule run main.joule

References

[1] Pereira, R., Couto, M., Ribeiro, F., et al. “Energy Efficiency across Programming Languages.” Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering
(SLE), 2017. https://joule.openie.dev/research/energy-efficiency-languages

[2] Milner, R. “A Theory of Type Polymorphism in Programming.” Journal of Computer and System
Sciences, vol. 17, no. 3, pp. 348-375, 1978. https://doi.org/10.1016/0022-0000(78)90014-4

[3] Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D. “RustBelt: Securing the Foundations of the Rust
Programming Language.” Proceedings of the ACM on Programming Languages, vol. 2, no. POPL,
2018. https://doi.org/10.1145/3158154

[4] Boyapati, C., Lee, R., Rinard, M. “Ownership Types for Safe Programming: Preventing Data Races
and Deadlocks.” Proceedings of OOPSLA, 2002. https://doi.org/10.1145/582419.582440

13

https://joule.openie.dev/research/energy-efficiency-languages
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3158154
https://doi.org/10.1145/582419.582440

Joule Technical Overview Charlot (2026)

[5] Pinto, G., Castor, F., Liu, Y.D. “Mining Questions About Software Energy Consumption.” Proceed-
ings of the 11th Working Conference on Mining Software Repositories (MSR), 2014. https://doi.org/
10.1145/2597073.2597110

[6] Khan, K.N., Hirki, M., Niemi, T., et al. “RAPL in Action: Experiences in Using RAPL for Power
Measurements.” ACM TOMPECS, vol. 3, no. 2, 2018. https://doi.org/10.1145/3177754

[7] Sutter, H. “Structured Concurrency.” ISO/IEC JTC1/SC22/WG21, 2021. https://www.open-std.org/
jtcl/sc22/wg21/docs/papers/2021/p2300r0.html

[8] Jouppi, N.P., et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit.” Proceedings
of the 44th Annual International Symposium on Computer Architecture (ISCA), 2017. https://doi.org/
10.1145/3079856.3080246

[9] Lattner, C., Adve, V. “LLVM: A Compilation Framework for Lifelong Program Analysis & Trans-
formation.” Proceedings of CGO, 2004. https://doi.org/10.1109/CG0O.2004.1281665

[10] Lattner, C., et al. “MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.”
Proceedings of CGO, 2021. https://doi.org/10.1109/CGO51591.2021.9370308

[11] Schulte, E., Dorn, J., Harding, S., et al. “Post-compiler Software Optimization for Reducing En-
ergy.” Proceedings of ASPLOS, 2014. https://doi.org/10.1145/2541940.2541980

[12] Charlot, D.J. “Bounded Entropy in Formal Languages: A Mathematical Foundation for
Deterministic Code Generation.” OpenlE Technical Report, December 2025.

[13] Charlot, D.J. “Cortex: Neural-Symbolic Programming for Energy-Efficient Code Execution.”
OpenlE Technical Report, January 2026.

[14] Charlot, D.J. “Metabolic Cascade Inference: Hardware-Aware Adaptive Routing for Energy-
Efficient AL.” OpenlE Technical Report, January 2026.

[15] Charlot, D.J. “Cortex: The AI-First Programming Language Based on Selective State Spaces.” OpenlE Technical
Report, February 2026.

This whitepaper describes independent academic research focused on energy-efficient programming language design.

Published freely without patent protection under CC BY 4.0 license.

Contact: david@openie.dev | dcharlot@ucsb.edu Latest Updates: https.//openie.dev/projects/joule

14

https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/3177754
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2300r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2300r0.html
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2541940.2541980
mailto:david@openie.dev
mailto:dcharlot@ucsb.edu
https://openie.dev/projects/joule

	Joule Technical Overview
	Abstract
	1. Introduction
	1.1 Design Goals
	1.2 Target Applications
	1.3 Why Not Rust?

	2. Core Language Features
	2.1 Type System
	2.2 Memory Management
	2.3 Energy Annotations

	3. Concurrency Model
	3.1 Structured Concurrency
	3.2 Channels and Message Passing

	4. Heterogeneous Computing
	4.1 First-Class Hardware Targets
	4.2 Hardware Abstraction

	5. Compiler Architecture
	5.1 Tri-Backend Design
	5.2 Energy-Aware Optimization

	6. Standard Library
	6.1 Core Modules
	6.2 Energy Module

	7. Interoperability
	7.1 C Foreign Function Interface
	7.2 WebAssembly Support

	8. Platform Support
	Tier 1 (Full support, CI-tested)
	Tier 2 (Builds, community-tested)
	Tier 3 (Experimental)

	9. Getting Started
	Installation
	Hello World

	References

